
1Grade 1 Standards
Top Mathematicians

Shape and Space

1.SS.1
Demonstrate an understanding of measurement as a process of comparing by:
• identifying attributes that can be compared
• ordering objects
• making statements of comparison
• filling, covering or matching.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Identify common attributes, such as length (height), mass (weight), volume (capacity) and area, which could be used to compare a given set of two objects.
 Compare two given objects and identify the attributes used to compare.
 Determine which of two or more given objects is longest/shortest by matching and explain the reasoning.
 Determine which of two or more given objects is heaviest/lightest by comparing and explain the reasoning.
 Determine which of two or more given objects holds the most/least by filling and explain the reasoning.
 Determine which of two or more given objects has the greatest/least area by covering and explain the reasoning. 

1.635

1.645

1.655

1.665

1.675

1.685


1.SS.2
Sort 3D objects and 2D shapes using one attribute, and explain the sorting rule.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Sort a given set of familiar 3D objects or 2D shapes using a given sorting rule.
 Sort a given set of familiar 3D objects using a single attribute determined by the student and explain the sorting rule.
 Sort a given set of 2D shapes using a single attribute determined by the student and explain the sorting rule.
 Determine the difference between two given presorted sets of familiar 3D objects or 2D shapes and explain a possible sorting rule used to sort them.
 Select 2D shapes from a given set of 2D shapes to reproduce a given composite 2D shape.
 Select 3D objects from a given set of 3D objects to reproduce a given composite 3D object.
 Predict and select the 2D shapes used to produce a composite 2D shape, and verify by deconstructing the composite shape.
 Predict and select the 3D objects used to produce a composite 3D object, and verify by deconstructing the composite object.
 Identify 3D objects in the environment that have parts similar to a given 2D shape. 

1.695

1.705

1.715

1.725

1.735

1.745


1.SS.3
Replicate composite 2D shapes and 3D objects.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Sort a given set of familiar 3D objects or 2D shapes using a given sorting rule.
 Sort a given set of familiar 3D objects using a single attribute determined by the student and explain the sorting rule.
 Sort a given set of 2D shapes using a single attribute determined by the student and explain the sorting rule.
 Determine the difference between two given presorted sets of familiar 3D objects or 2D shapes and explain a possible sorting rule used to sort them.
 Select 2D shapes from a given set of 2D shapes to reproduce a given composite 2D shape.
 Select 3D objects from a given set of 3D objects to reproduce a given composite 3D object.
 Predict and select the 2D shapes used to produce a composite 2D shape, and verify by deconstructing the composite shape.
 Predict and select the 3D objects used to produce a composite 3D object, and verify by deconstructing the composite object.
 Identify 3D objects in the environment that have parts similar to a given 2D shape. 

1.SS.4
Compare 2D shapes to parts of 3D objects in the environment.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Sort a given set of familiar 3D objects or 2D shapes using a given sorting rule.
 Sort a given set of familiar 3D objects using a single attribute determined by the student and explain the sorting rule.
 Sort a given set of 2D shapes using a single attribute determined by the student and explain the sorting rule.
 Determine the difference between two given presorted sets of familiar 3D objects or 2D shapes and explain a possible sorting rule used to sort them.
 Select 2D shapes from a given set of 2D shapes to reproduce a given composite 2D shape.
 Select 3D objects from a given set of 3D objects to reproduce a given composite 3D object.
 Predict and select the 2D shapes used to produce a composite 2D shape, and verify by deconstructing the composite shape.
 Predict and select the 3D objects used to produce a composite 3D object, and verify by deconstructing the composite object.
 Identify 3D objects in the environment that have parts similar to a given 2D shape. 

1.SS.1

Patterns and Relations

1.PR.1
Demonstrate an understanding of repeating patterns (two to four elements) by:
• describing
• reproducing
• extending
• creating
patterns using manipulatives, diagrams, sounds and actions.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Describe a given repeating pattern containing two to four elements in its core.
 Identify and describe errors in a given repeating pattern.
 Identify and describe the missing element(s) in a given repeating pattern.
 Create and describe a repeating pattern, using a variety of manipulatives, diagrams, sounds and actions.
 Reproduce and extend a given repeating pattern, using manipulatives, diagrams, sounds and actions.
 Identify and describe a repeating pattern in the environment, e.g., classroom, outdoors, using everyday language.
 Identify repeating events; e.g., days of the week, birthdays, seasons. 

1.625


1.PR.2
Translate repeating patterns from one representation to another.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Represent a given repeating pattern, using another mode; e.g., actions to sound, colour to shape, ABCABC to bear eagle fish bear eagle fish.
 Describe a given repeating pattern, using a letter code; e.g., ABCABC. 

1.PR.3
Describe equality as a balance and inequality as an imbalance, concretely and pictorially (0 to 20).
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Construct two equal sets, using the same objects (same shape and mass), and demonstrate their equality of number, using a balance limited to 20 elements.
 Construct two unequal sets, using the same objects (same shape and mass), and demonstrate their inequality of number, using a balance limited to 20 elements.
 Determine if two given concrete sets are equal or unequal and explain the process used. 

1.PR.4
Record equalities using the equal symbol.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Represent a given equality, using manipulatives or pictures.
 Represent a given pictorial or concrete equality in symbolic form.
 Provide examples of equalities where the given sum or difference is on either the left or right side of the equal symbol (=).
 Record different representations of the same quantity (0 to 20) as equalities. 

1.5920

1.2710

1.285

1.295

1.3015

1.315

1.3210

1.3310

1.3410

1.355

1.3610


1.PR.1

Number

1.N.1
Say the number sequence, 0 to 100, by:
• 1s forward and backward between any two given numbers
• 2s to 20, forward starting at 0
• 5s and 10s to 100, forward starting at 0.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Recite forward by 1s the number sequence between two given numbers (0 to 100).
 Recite backward by 1s the number sequence between two given numbers.
 Record a given numeral (0 to 100) symbolically when it is presented orally.
 Read a given numeral (0 to 100) when it is presented symbolically.
 Skip count by 2s to 20 starting at 0.
 Skip count by 5s to 100 starting at 0.
 Skip count forward by 10s to 100 starting at 0.
 Identify and correct errors and omissions in a given number sequence. 

1.110

1.35

1.45

1.520

1.65

1.815

1.915

1.1020

1.1120


1.N.10
Describe and use mental mathematics strategies (memorization not intended), such as:
• counting on and counting back
• making 10
• doubles
• using addition to subtract to determine the basic addition facts to 18 and related subtraction facts.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Use and describe a personal strategy for determining a given sum.
 Use and describe a personal strategy for determining a given difference.
 Write the related subtraction fact for a given addition fact.
 Write the related addition fact for a given subtraction fact.
(It is not intended that students recall the basic facts but become familiar with strategies to mentally determine sums and differences.) 

1.35

1.3710

1.3810

1.3915

1.4110

1.4220

1.4315

1.4415

1.4710

1.4810

1.4920

1.5010

1.515

1.5250

1.5350

1.5415

1.5510

1.5615

1.5710

1.5815

1.5920

1.6015

1.6110

1.2010

1.2310


1.N.2
Recognize, at a glance, and name familiar arrangements of 1 to 10 objects or dots.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Look briefly at a given familiar arrangement of objects or dots and identify the number represented without counting.
 Look briefly at a given familiar arrangement and identify how many objects there are without counting.
 Identify the number represented by a given arrangement of objects or dots on a ten frame. 

1.110


1.N.3
Demonstrate an understanding of counting by:
• indicating that the last number said identifies “how many”
• showing that any set has only one count
• using the counting on strategy
• using parts or equal groups to count sets.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Answer the question, “How many are in the set?” using the last number counted in a given set.
 Identify and correct counting errors in a given counting sequence.
 Show that the count of the number of objects in a given set does not change regardless of the order in which the objects are counted.
 Count the number of objects in a given set, rearrange the objects, predict the new count and recount to verify the prediction.
 Determine the total number of objects in a given set, starting from a known quantity and counting on.
 Count quantity using groups of 2s, 5s or 10s and counting on. 

1.110

1.45

1.520

1.65

1.915

1.125

1.135


1.N.4
Represent and describe numbers to 20 concretely, pictorially and symbolically.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Represent a given number up to 20, using a variety of manipulatives, including ten frames and base ten materials.
 Read given number words to 20.
 Partition any given quantity up to 20 into two parts and identify the number of objects in each part.
 Model a given number, using two different objects; e.g., 10 desks represents the same number as 10 pencils.
 Place given numerals on a number line with benchmarks 0, 5, 10 and 20. 

1.1410

1.1510


1.N.5
Compare sets containing up to 20 elements to solve problems using:
• referents
• onetoone correspondence.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Build a set equal to a given set that contains up to 20 elements.
 Build a set that has more, fewer or as many elements as a given set.
 Build several sets of different objects that have the same given number of elements in the set.
 Compare two given sets, using onetoone correspondence, and describe them, using comparative words such as more, fewer, as many, or same as.
 Compare a set to a given referent, using comparative language.
 Solve a given problem (pictures and words) that involves the comparison of two quantities. 
1.N.6
Estimate quantities to 20 by using referents.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Estimate a given quantity by comparing it to a given referent (known quantity).
 Select an estimate for a given quantity from at least two possible choices and explain the choice. 

1.N.7
Demonstrate, concretely and pictorially, how a given number can be represented by a variety of equal groups with and without singles.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Represent a given number in a variety of equal groups with and without singles, e.g., 17 can be represented by 8 groups of 2 and one single, 5 groups of 3 and two singles, 4 groups of 4 and one single, and 3 groups of 5 and two singles.
 Recognize that for a given number of counters, no matter how they are grouped, the total number of counters does not change.
 Group a set of given counters into equal groups in more than one way. 

1.915

1.135


1.N.8
Identify the number, up to 20, that is one more, two more, one less and two less than a given number.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Name the number that is one more, two more, one less or two less than a given number, up to 20.
 Represent a number on a ten frame that is one more, two more, one less or two less than a given number. 

1.N.9
Demonstrate an understanding of addition of numbers with answers to 20 and their corresponding subtraction facts, concretely, pictorially and symbolically by:
• using familiar and mathematical language to describe additive and subtractive actions from their experience
• creating and solving problems in context that involve addition and subtraction
• modeling addition and subtraction using a variety of concrete and visual representations, and recording the process symbolically.
• Achievement Indicators
• Students who have achieved this outcome(s) should be able to:
 Act out a given story problem presented orally or through shared reading.
 Indicate if the scenario in a given story problem represents additive and/or subtractive action.
 Represent the numbers and actions presented in a given story problem by using manipulatives, and record them using sketches and/or number sentences.
 Create a story problem for addition that connects to student experience and simulate the action with counters.
 Create a story problem for subtraction that connects to student experience and simulate the action with counters.
 Create a word problem for a given number sentence.
 Represent a given story problem pictorially or symbolically to show the additive and/or subtractive action and solve the problem. 

1.1910

1.2010

1.2110

1.2210

1.2310

1.2410

1.2510

1.2610

1.2710

1.285

1.295

1.3015

1.315

1.3210

1.3310

1.3410

1.355

1.3610


1.N.1